

HOUSEKEEPING

-STP Student Rules

- Class will be from 5:00-8:00 PM. I will stay after a few moments for discussion and questions.
*Microsoft One Note
*Scheduling Software
*Microsoft Excel

2

WE ARE Learning Organization

-... A learning organization is an organization skilled at creating, acquiring, and transferring knowledge, and at modifying its behavior to reflect new knowledge and insights (CIP.)
-This definition begins with a simple truth: new ideas are essential if learning is to take place.

- Therefore... I AM A FACILITATOR, NOT A TEACHER

Planning vs Scheduling? (1-1)

- 'Project planning' is all about choosing and designing effective policies and methodologies to attain project objectives. While 'Project scheduling' is a procedure of assigning tasks to get them completed by allocating appropriate resources within an estimated budget and time-frame.

Planning vs Scheduling? (1-1)

- Planning deals with what operations we need to perform and how do we need to perform the operations.
Whereas scheduling is concerned with who $\left({ }^{* * *}\right)$ will perform the operations and when the operations will be performed

Proper Planning \& Scheduling

 (2-1)Why Proper planning:

- Saves money by reducing wasted time.
- Anousteleys Reduces delays in project completion.
- Avoids conflicts with project participants, such as the architect, engineer, suppliers and specialty contractors.
- Increases the quality of the project. (whatis?)

Preparing the Project Plan (2-2)

- The project plan consists of activities in sequential order.
- Steps in project plan:
- Define activities, including scope.
- Determine activity durations.
- Arrange activities in a logical

Define Activities sequence.

10

Defining Construction Activities

- Activity: a specific task in the project that has a distinct beginning, a distinct end, and requires a specific amount of time.
- The project is an accumulation of many activities that are carried out in a logical and interdependent sequence.

An Activity... (2-3)

- Is a specific task.
- Has a beginning and an end. (2-3)
- Has a duration (minutes, hours, days, etc.)(2-2)
- Usually consumes resources. (2-3)
- Material, labor, equipment, specialty contractors - (ex. no resource?)
- Is assignable (someone does it).(2-3)
- Is measurable in quantity or time.(2-3)
- Has a relationship to other activities.(2-3)
- (pred-suc)
- Has delivery associated with it.(2-3)

Activity Scope (2-4)

- Relates to quantity of installation and time.
- Relates to size of project.
- Relates to crew size and number of crews.
- Relates to detail required by contract documents.
- Relates to the amount of jobsite control of the schedule.

13

Duration of Activities(2-4,5)

- The amount of time between the start and the finish of the activity
- Usually in "days" in construction schedules ("Day" = working day)
- Need to make accurate estimate of time.
- Account for minor delays in activity duration.
- What is sand bagging? (15 activities)

15

Methods of Estimating Duration (2-5)

- Convert labor hours from cost estimate.
- Estimate time for specific crew.
- Production output from estimating manuals (RS Means)
- Specialty contractor input
- Supplier input
- Dependent duration to pace-setting activity
- **Parkinsons Law**

Putting the Activities Together (2-6)

- Assemble activities in "logical sequence."
- What is?
- How are we going to build the project?
- No right or wrong way? superintendent's viewpoint.
- Always trying to be efficient.
- Continuous flow of work.

17

Activity Relationships

- Finish-to-Start (FS) (2-7)
- Activity must be complete before next activity starts.
- Example: Footings before foundation wall.

18

Activity Relationships

- Start-to-Start (SS) (2-7)
- Start of the second activity is related to the start of the first activity.
- Could be a separation of time, or lag between the starts.

Activity Relationships

- Finish-to-Finish (FF) (Rare - III Explain - 2-7)
- The finish of the first activity must be complete before the finish of another activity.
- Lags can be used.

Install

Activity Relationships

- Start-to-Finish (SF) (??? 2-8)
- One activity cannot finish until the other activity is started.
- Not used as frequently as the other relationships.

21

Activity Relationships: Homewrk

Get Comfortable *Read and Re-read

- Activity : 2-2 (defined)
- Size and Scope (2-4)
- Duration (2-5)
- Activity Relationships (2-7)
- F-S (2-7)
- S-S (2-7)

F-F (2-7)

- S-F (2-8)
- Choose any scope of work and make a 15 item schedule with the above info.

22

Learning Objectives

- Identify and prepare a conceptual estimate.
- Review quantity take-offs.
- Perform take-offs.
- Review the pricing of an estimate and compile an estimate.
- Complete a subcontractor selection process and select subcontractors for an estimate.

24

The Conceptual Estimate (2.2)

- Developed early in project development.
- Limited accuracy. (term : WAG)
- Large contingency may be required (depending on contractor's database).
- Usually based on simple parameters. (my exp.)
- Such as gross area multiplied by the square foot cost for similar projects.
- Helps the owner make basic decisions about moving forward with the project.
- Initial decision about getting involved.

25

A Simple Conceptual Estimate (2.3)

26

28

Concrete Quantity Take-Off

29

The Detailed Estimate

- Identifies assembly elements.
- Detailed take-off of material quantities.
- The more detailed the estimate, the more accurate the estimate can be.
- As the documents increase in detail, the estimate increases in detail, and the included contingency (risk) decreases.
- More accurate than the conceptual estimate.
- Little or no contingency is added.

The Detailed Estimate

The Detailed Estimate Includes:

- A break down of the work by categories of similar items or as required by the bid form. (remember 6" sidewalk)
- Quantification of similar elements of work for each category for costing. (proj. ctrl.)
- Determination of a construction plan.
- Determination of a construction schedule. (proj. ctrl.)
- An estimate of cost of labor, material, equipment, subcontractors and service providers for each element of each item of work.
- The direct and indirect cost of the work which includes all the cost elements.
- Solicitation and receipt of quotes for materials, services by others and work to be subcontracted.
- A summary of all elements of costs (labor, material, equipment, subcontractors and service providers) to determine the total estimated cost of work.
- Analysis of risk the project should bear
- Determination of a markup to be added to the cost of work to produce a sell bid price.

Creating the Project Budget

$$
(1-18 \rightarrow 1-23)
$$

Project spread over three years to finance:

- Phase I: Site work; gatehouses; bridges; Building A for offices; slabs of Buildings B, C, and D; site asphalt paving and landscaping.
- Phase II: Complete three warehouse buildings.
- Phase III: Construction of new office building, remodel Building A.

37

38

40

Phase II Budget					
Item	Description	Area	Unit	Unit Price	Cost
Phase II					
Building B	Warehouse Building Completion	250,000	SF	\$21.51	\$5,377,500
Building C	Warehouse Building Completion	250,000	SF	\$21.51	\$5,377,500
Building D	Warehouse Building Completion	250,000	SF	\$21.51	\$5,377,500
					\$16,132,500
20\% Conting					\$3,226,500
Total Phase	Budget				\$19,359,000
Figure 2.3 (Continued)					
$\sqrt[n]{\sqrt{S} T P}$	UNIT IMPROVING PRODUCTIVITY				

43

Common Estimate Mistakes:

-Thinking in a Vacuum.
-Paying to get work.
-Not listening to the experts.
-Forgetting something.
-Knowing too much.
-Not enough detail.
-Not understanding the contract.
-Poor understanding of exclusions/
scoping.

45

Session 2 Review

- Conceptual estimates may be based on specific project areas (measured in SF).
- Conceptual estimates are used to establish the project budget.
- Contingencies allow for the uncertainties at a specific time in the project design.
- More detailed estimates are prepared as the documents are completed.
- A take-off of quantities is completed to provide more detail estimates.
- These quantities are used to estimate labor, material, and

46

Session 2 Review

(Continued)

- Subcontractor selection is completed using an analysis based on the candidates' capabilities, scope and price.
- A project plan and schedule are usually prepared using either a bar chart (GANT) format or a critical path method format.
- An updated project plan is needed to help the supervisor avoid incorrect management decisions.

47

Session 2 Summary: Semeradical (Final)

- A conceptual estimate is rare. Someone experienced with the company quickly can identify a project's magnitude and determine fit.
- During the detailed estimate/ proposal is typically when take-offs occur, however take-offs will be performed throughout the project to determine change in conditions and productivity.
- A budget is typically created at project award. The budget is an extract from the detailed estimate.
- Cost Reports/ Budgets are a PROJECT CONTROL

48

One Last Thing

- Chapter Length - 2.1 to 2.76
- Planning vs scheduling
- Workforce utilization/ output (balancing)
- Look ahead schedules
- The power of pre-planning

Unit 3 Sched. \& Unit 5 Prod.

Planning And Scheduling Preparing the project plan Communicating the plan The Critical Path Using the schedule on the job Updating the schedule Schedule as documentation

Intro to Improving Productivity Construction Estimates, Planning and Scheduling
Who controls project costs?
Reporting and analyzing actual costs.
Planning for cost control.
Cost control strategies
Quantifying lost labor productivity. Equipment management
Working with oroiect isartisers,

